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An  electrochemical  cell is  a multidisciplinary  system  which  involves  complex  chemical,  electrical,  and
thermodynamical  processes.  The  primary  objective  of  this  paper  is  to develop  a  linear  graph-theoretical
modeling  for the  dynamic  description  of  electrochemical  systems  through  the representation  of  the
system  topologies.  After a brief  introduction  to the  topic  and  a  review  of  linear  graphs,  an  approach  to
develop  linear  graphs  for  electrochemical  systems  using  a circuitry  representation  is discussed,  followed
in  turn  by  the  use  of the  branch  and  chord  transformation  techniques  to  generate  final  dynamic  equations
inear graph
lectrochemical cell
iMH battery simulation
ybrid electric vehicle

governing  the  system.  As  an  example,  the  application  of linear  graph  theory  to modeling  a  nickel  metal
hydride  (NiMH)  battery  will be  presented.  Results  show  that  not  only  the  number  of  equations  are  reduced
significantly,  but  also  the  linear  graph  model  simulates  faster  compared  to  the original  lumped  parameter
model.  The  approach  presented  in  this  paper  can be extended  to modeling  complex  systems  such  as  an
electric  or  hybrid  electric  vehicle  where  a  battery  pack  is  interconnected  with  other  components  in  many
different domains.
. Introduction

Due to the recent interests in battery electric and hybrid elec-
ric vehicles, a significant amount of research has been focused on
econdary batteries or electrochemical energy storage devices. For
his reason, many of these battery works have been developed as a
art of simulation models of these vehicles. These works are some-
imes based on empirical relationships, at other times on a detailed
escription of the physical and chemical processes that take place

n the cell [1–4], and even on the development of equivalent circuits
5,6]. Various techniques have been used to develop these models
uch as lookup tables, lumped parameter models [4],  or distributed
odels using porous electrode theory [1–3].
In this paper, we propose a formalism which, we believe, is more

ppropriate for the phenomenological description of electrochem-
cal systems which usually consists of complex phenomena across

ultiple domains; namely the chemical domain, electrical domain,
hermal domain, and other domains especially when the battery is
laced in a larger system such as a hybrid electric vehicle system.
odeling engineers usually cope with the generation and solution

f the equations governing the motion of such systems.

Linear graph theory is a branch of mathematics that stud-

es the manipulation of topology [7,8]. Although this theory has
een extensively incorporated into formulation of a wide range of
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physical systems, namely electrical, mechanical, and hydraulic sys-
tems, the extent to which this theory has been applied to modeling
electrochemical and thermal processes remains from nil to mini-
mum.  It is the goal of this paper to examine this particular problem
in some detail. It will be shown in this paper that the electro-
chemical processes and thermodynamic behaviors of batteries, in
general, can be described as equivalent electrical components inter-
connected to each other, making it possible to use graph theory to
develop the dynamic equations for the whole system.

The paper begins with a brief overview of linear graph theory
and associated mathematical theorems, followed by a discussion of
the applications of linear graphs to modeling electrochemical cells.
An example will also be provided to demonstrate the use of linear
graphs to model a NiMH battery including the thermal effects and
side reactions. Finally are some concluding remarks.

2. Linear graph theory

2.1. Overview

A linear graph representation of a physical system is seen as a
collection of oriented line segments called edges which intersect
only at their node points. Although physical systems in different
energy domains use different interpretations of nodes and edges,
the linear graph topological interpretations of these systems are the

same: nodes are the boundaries of a component, while a set of edges
represent the component itself. For example, the linear graph for
the electrical network given in Fig. 1 can be constructed by drawing
a node for each point at which two physical elements connect, and
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Fig. 1. Electrical network example.
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˛c corresponds to the branch and chord across variables. The ele-
Fig. 2. Linear graph isomorphic to electrical network.

y replacing these elements with directed edges on a one-to-one
asis. This linear graph is shown in Fig. 2 and is said to be topo-

ogically equivalent to the electrical circuit in Fig. 1. The direction
s arbitrarily assigned to each edge and is represented by an arrow

hich provides a reference direction for the two abstract variables
ssociated with an edge: though variable and across variable.

By definition, a through variable is a variable that can be mea-
ured by an instrument in series with the corresponding element
ssociated with the edge, while an across variable is a variable that
an be measured by an instrument placed in parallel with the edge.
or an electrical network, for example, through and across variables
an be the currents and voltages, respectively. A summary of possi-
le through and across variable for some common energy domains
re summarized in Table A.1. These two quantities are carried along
he entire linear graph so that the balance of energy at any point of
he graph can be found. This makes it easier to deal with interfaces
etween physical systems in different energy domains as well as
etermining the energy within the system.

The through and across variables of an edge are not indepen-
ent of each other, but are related by a mathematical expression
alled terminal equation or constitutive equation which represents
he physical nature of the linear graph component. Clearly, the
mpirical nature of the terminal equation associated with an edge
s dependent on the edge’s domain. For example, the current and
oltage associated with an electrical resistor are related by Ohm’s
aw which serves as the terminal equation for the resistor element.
One of the unique features of linear graph theory is its
bility to separate the equations governing the physics of a sys-
em’s individual components from the equations governing their
ources 196 (2011) 10442– 10454 10443

interconnections. That is, the system’s topological equations are
always linear and may  be formulated in a systematic fashion
regardless of the linearity/nonlinearity of a system’s component
equations. The complete topological description of a physical sys-
tem can be written in a simple mathematical form using an
incidence matrix �. This is a v × e matrix, where v is the number
of nodes in the graph, and e is the number of edges. The incidence
matrix has elements

�(i, j) =

⎧⎪⎨
⎪⎩

−1, if edge j is incident upon and towards node i
+1, if edge j is incident upon and away from node i

0, if edge j is not incident upon node i

Specifically, the directed edge j is positively incident upon node i if
it points towards the node, and negatively incident if it is directed
away from the node. As an example, the incidence matrix for the
linear graph in Fig. 2 takes the form:

� =
E1 R2 R3 C4

a
b
g

[
1 1 0 0
0 −1 1 1

−1 0 −1 −1

]

in which the vertices associated with rows and the edges associated
with columns have been explicitly labeled.

An important concept in linear graph theory is the spanning tree,
which is a subgraph that includes all the nodes of the original graph
without any loops. The remaining edges which are not selected in
the tree are grouped in cotrees.  The edges of the tree are called
branches while the edges of the cotree are referred to as chords.  In
this paper, a branch is represented by a solid line while a chord is
depicted by a dotted line. One possible tree for the graph in Fig. 2
has been drawn with solid lines and consists of edges E1 and C4.
The remaining edges R2 and R3 comprise the chords of the cotree.
For graphs consisting of multiple parts (as in systems containing
multiple energy domains), each part is independently represented
by a tree and the collection of all these trees make up the graph’s
forest, while all of the chords represent its coforest.

Along with the concept of a system tree, two  new topological
matrices can now be introduced - the fundamental cutset (f-cutset)
matrix and the fundamental circuit (f-circuit) matrix. A cutset is
defined as a set of edges that, when removed, divide the graph into
two  separate parts. An f-cutset consists of a single branch and a
unique set of chords. On the other hand, a circuit is a set of edges
that form a closed loop with the f-circuit being a circuit containing
one chord and a unique set of branches. In an electrical system, a
cutset is essentially a linear combination of the node-based Kirchoff
current law (KCL), which is an expression that the flows passing
through a node are conservative. A circuit corresponds to the Kir-
choff voltage law (KVL), which sums up the forces operating along
the edges enclosing each of the circuits. Mathematical representa-
tions of the f-cutset (Af) and f-circuit (Bf) matrices can be written
as

Af � =
[

1 Ac

] [
�b

�c

]
= 0 (1)

and

Bf  ̨ =
[

Bb 1
] [

˛b

˛c

]
= 0 (2)

In these equations, the matrix 1 is the identity matrix, �b and
�c represent the branch and chord through variables, and ˛b and
ment (i, j) of the matrix Ac takes on a value of either +1, −1, or 0
which indicates whether chord j is a part of and oriented in the
same direction as the defining branch i, a part of and oriented in
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he opposite direction of the branch i, or not a part of the f-cutset,
espectively. In a similar fashion, the value of the element (i, j) of
he matrix Bb is either +1, −1, or 0 depending whether branch j is a
art of and oriented in the same direction along the loop as chord

, a part of and oriented in the opposite direction along the loop as
hord i, or not a part of the f-circuit, respectively.

As a result of its linearity, the cutset equation can be rearranged
o express the branch through variables in terms of the chord
hrough variables. This arrangement is called a chord transformation
7–11] and can be mathematically expressed as

b = −Ac�c (3)

n a similar manner, we may  also define the branch transformation
7–11] by rearranging the circuit equation as

c = −Bb˛b (4)

Interestingly, the matrices Ac and Bb are orthogonal as a conse-
uence of the definition of f-cutset and f-circuit matrices [7,8,12]

c = −BT
b (5)

.2. Formulation of system equations and tree selection

The f-cutset, f-circuit, and incidence matrices can be used to
enerate the governing equations for the physical system to which
he linear graph is topologically equivalent. In the branch-chord
ormulation of the system equations, Eqs. (3) and (4) can be used
o eliminate the branch through and chord across variables from
he set of system equations. A compact set of final equations can
e obtained by substituting (3) and (4) into the terminal equa-
ions. As discussed above, the cutset, circuit, and terminal equations
rovide a necessary and sufficient set of equations for determin-

ng the time response of a physical system. Thus, the selection
f trees for the graphs does not affect the underlying mathemat-
cal model. However, the selection of trees can greatly reduce the
umber of equations that have to be solved simultaneously, espe-
ially if some care is taken in selecting the branches of these trees.
éger and McPhee [13] made an observation that the number of
ynamic equations remaining will depend directly on the number
f branch coordinates that have been used. Therefore, the num-
er of equations can be reduced further by selecting into the trees
hose elements for which a minimum number of across variables are
nknown. The result will be a smaller number of branch coordinates
nd therefore, a smaller number of final equations. This observation
an also be extended by selecting into the cotrees the edges that can
inimize the number of chord through variables so that the num-

er of chord coordinates in the final set of equations is reduced. This
pproach is useful when we want through variables to appear in
he final equations and will be demonstrated in an example given
n Section 4.

Using this simple criterion, it is desirable to include voltage
ources in the electrical domain, and position drivers and revolute
oints in the mechanical domain, into the trees since their across
ariables are completely known functions of time. Similarly, cur-
ent sources in the electrical domain and force actuators in the
echanical domain can be selected into the cotrees since the cor-

esponding through variables appearing in the dynamic equations
ould be known functions.

. Linear graph models for electrochemical cells

Linear graph theory has been extensively applied to many

hysical systems in different energy domains, namely mechani-
al domain, electrical domain, and hydraulic domain [7–13]. Linear
raphs have not yet been used to describe electrochemical cells and
hermodynamic processes.
Fig. 3. Electrochemical cell.

In this section, a graph-theoretic representation for electro-
chemical systems similar to the circuit diagram in electrical
network theory will be introduced. Aside from being intuitively
advantageous in presentation, this graphical notation will reveal
the role of system topology in dynamic behavior. We  will present
the procedures for obtaining the dynamic equations governing an
electrochemical cell directly from the graph, and consequently one
may  look upon the network graph as another notation for the dif-
ferential equations themselves.

3.1. Batteries and electrochemical processes

Fig. 3 shows a schematic of a typical electrochemical cell. Every
electrochemical system contains two  electrodes separated by an
electrolyte and connected via an electronic conductor. Ions flow
through the electrolyte from one electrode to the other, and the
circuit is completed by electrons flowing through the external con-
ductor. At each electrode, an electrochemical reaction is occurring
with driving forces for reaction being determined by the thermo-
dynamic properties of the electrodes and electrolyte. In general, a
chemical reaction on an electrode can be written as∑

k

skMzk
k � �e− (6)

where Mk is the symbol for the chemical formula of species k, sk
is the stoichiometric coefficient for species k, � is the number of
electrons, and zk is the original charge of species k. For example,
consider the reaction

Zn + 2OH− � ZnO + 2e− + H2O (7)

In the above chemical equation, sZnO is −1, sOH− is 2, zZnO is 0, zOH−
is −1, and � is 2.

Following historical convention, current is defined as the flow of
positive charge. Thus, electrons move in the direction opposite to
that of the convention for current flow. Current density is the flux
of charge, i.e.,  the rate of flow of positive charge per unit area per-
pendicular to the direction of flow. The behavior of electrochemical

systems is determined more by the current density than by the total
current, which is the product of the current density and the surface
area of the porous electrode. In this paper, symbol j refers to current
density.
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Fig. 4. Dependence of current density on surface over-potential on positive elec-
trode of a NiMH cell at 30 ◦C.
T.-S. Dao, J. McPhee / Journal of Po

Owing to the historical development of the field of electrochem-
stry, we use over-potential to refer to the magnitude of the potential
rop caused by the resistance to the passage of current and open-
ircuit potential for the potential between two battery electrodes at
hich no current flows. This open-circuit potential �(t) is derived

rom the Gibbs free energy and then is reduced to the Nernst equa-
ion as

(t) = U + (T(t) − T0)
∂U

∂T
− RT(t)

�F
ln

(∏
k

csk
k (t)

)
(8)

here U is the open-circuit potential at standard conditions for the
lectrode, T0 is the reference temperature, (∂U/∂ T) is the reversible
eat constant for the reaction, and ck(t) is the concentration or
olality of the reactant k. The molality ck(t) can be related to the

lectric charge qk(t) using Faraday’s law:

k(t) = qk(t)
2F

(9)

hile the relationship between charge and current can be repre-
ented by

k(t) = dqk(t)
dt

(10)

he other parameters F, R, and T are the Faraday constant, the gas
onstant, and the battery temperature, respectively.

The resistive force for the chemical reactions at the two  elec-
rodes is termed the surface over-potential and is given the symbol
. The current density j(t), which is directly related to the rate of
hemical reaction, can be expressed as the function of the surface
ver-potential by the Butler–Volmer equation in the form

j(t) = i0

[
exp

(
˛F

RT(t)
�(t)

)
− exp

(
− ˛F

RT(t)
�(t)

)]
× exp

[
Ea

R

(
1

T(t)
− 1

T0

)]
= 2i0 sinh

(
˛F

RT(t)
�(t)

)
× exp

[
Ea

R

(
1

T(t)
− 1

T0

)] (11)

he Arrhenius equation exp [(Ea/R)((1/T(t)) − (1/T0))] represents
he dependency of the reaction rate on the battery tempera-
ure T(t) and the activation energy Ea. A positive �(t) produces

 positive (anodic) current. The derivation and application of the
utler–Volmer equation, and its limitations, is discussed in Chapter

 in the work of [3].  The dimensionless parameter ˛, called charge
ransfer coefficient is an additional kinetic parameter that relates
ow an applied potential favors one direction of reaction over the
ther. It usually has a value between 0.2 and 2.0. The parameter i0
s called the exchange current density and is analogous to the rate
onstant used in chemical kinetics. A reaction with a large value of
0 is often called fast or reversible. As an example, the relationship
etween the current density j(t) and the surface over-potential �(t)
or the main chemical reaction on the positive electrode in a NiMH
ell is graphed in Fig. 4.

Besides the main chemical reaction that generates most of the
attery’s current, there are usually several side reactions happening

n the cell container. The empirical nature of these side chemi-
al reactions depends on the type of batteries. For example, the
ide reactions are the hydrogen evolution and absorbtion reactions
n a lead-acid battery and the oxygen evolution and absorbtion
eactions in a NiMH cell. These side reactions may  have a signif-

cant impact on the battery performance and, therefore, modeling
hese effects is desirable. Mathematically, modeling side reactions
s similar to that of the main reaction since they are all chemical
eactions.
Fig. 5. Circuitry representation for (a) open-circuit potential equation and (b)
Butler–Volmer’s equation.

3.2. Electrical circuit-based representation for chemical reactions

To understand the composition of the model, an electrical cir-
cuit with equivalent components will be developed. Through the
relations between electrical components, this equivalent circuit
will clearly show the relationship between the electrochemical
equations to facilitate the application of linear graph theory to the
system.

The first equation we  will examine is the open-circuit potential
equation (i.e., the Nernst equation), Eq. (8),  which relates the elec-
trode open-circuit potential �(t) to the molality of the substances.
Since molality and electric charge are directly related by Faraday’s
laws in (9),  Eq. (8) can be thought of as a nonlinear electrical capaci-
tor (Fig. 5a) which stores free energy, integrates the current density
j(t) in order to obtain the electric charge, and thereby obtains the
open-circuit potential. Starting off from the initial battery state of
charge which is defined by the molality of materials on the bat-
tery electrodes, the charge gradually increases/decreases when the
cell is charged/discharged and so does the stored electrochemical
energy. The chemical kinetics represented by the Butler–Volmer
equation in (11) can be modeled by a nonlinear electrical resistor in
which the current density j(t) and the surface over-potential �(t) are
coupled by a nonlinear expression. This component is illustrated in
Fig. 5b.

Since the current density in Eq. (11) is the current density that
moves the ions (i.e., the molalities in Eq. (8)) from one electrode to
another, these two components must be connected in series. The
total electrical potential across both of these components is the sum
of the individual potentials across each of the two components and
is called the positive or negative electrode potential. We  can state

that: each chemical reaction is represented by one pair of these capac-
itor and resistor. If we  only consider the main chemical reactions,
there will be two  pairs of capacitor and resistor, each representing
a chemical reaction on one electrode.
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two  graphs in Fig. 8 are coupled by the temperature variable T(t)
which appears in Eqs. (8) and (11).

For the thermal domain, the graph is simply a set of edges con-
nected in parallel. The through and across variables for the thermal
domain are the time-derivative of entropy Ṡ(t) and the battery tem-
Fig. 6. Circuitry representation for multiple reactions.

Now let us consider an electrode at which there are n chemical
eactions (i.e., both main and side reactions). Since these reactions
re independent of each other, the total electrode current den-
ity jtotal(t) is obtained by adding up the current densities of the
ndividual reactions. That is

total(t) = j1(t) + j2(t) + · · · + jn(t) = icell

Asurf
. (12)

here Asurf is the surface area of the porous electrode and icell
s the current produced by the battery. The voltage across each
apacitor–resistor pair is also the same

C1 (t) + �R1 (t) = �C2 (t) + �R2 (t) = · · · = �Cn (t) + �Rn (t) (13)

t can be inferred from Eqs. (12) and (13) that the electrode can
e represented by multiple capacitor–resistor pairs hooked up in
arallel as shown in Fig. 6.

We can close the circuit by connecting the positive and negative
erminals to a current source or an external load as shown in Fig. 7.
he external load could be a complete electric vehicle. In this figure,
int is the internal resistance of the battery. For some batteries, this
esistance is very small and its effects can be ignored.

.3. Thermal effects

So far, we have presented the electrical circuit representation for
he chemical reactions in an electrochemical cell. The model that
e consider assumes that the battery temperature is constant or,

n other words, the battery model we have investigated so far is an
sothermal model. This assumption is generally acceptable for small
ells where the applied current is not high. However, when the cur-
ent intensity is high, as in the case of traction batteries for electric
r hybrid electric vehicles, the effects of battery temperature can
ecome significant.

Application of energy balance [14,15] to the whole cell yields

pmcell
dT(t)

dt
= −hAcell(T(t) − Ta) + icell(t)vcell(t)

−
n∑

k=1

jk(t)

(
�k(t) − T(t)

∂Uk

∂T

)
(14)
n this equation, cp is the heat capacity of the cell, mcell is the mass
f the cell, h is the external heat transfer coefficient, Acell is the
ell container external surface area, Ta is the ambient temperature,
nd n is the number of chemical reactions. The right-hand side of
ources 196 (2011) 10442– 10454

the equation consists of three terms: the first term corresponds to
the heat exchange with the outside environment through the cell
container walls according to Newton’s law of cooling, the second
term refers to the irreversible heat arisen from ohmic heating for
the whole cell, and the last term is the reversible entropic heat
released or absorbed by the chemical reactions. Eq. (14) shows that
the heat generation rate is equal to the sum of heat transferred out
of the system and the heat stored in the system.

According to classical thermodynamics, Eq. (14) can be written
as

dQ (t)
dt

= dQ ext(t)
dt

+ dQ irr(t)
dt

+ dQ rev(t)
dt

, (15)

in which dQ(t) = cpmcelldT(t) according to the definition of heat
capacity and (dQext(t)/dt) = − hAcell(T(t) − Ta) according to Newton’s
law of cooling. The last two  terms, (dQ irr(t)/dt) = icell(t)vcell(t) and
(dQ rev(t)/dt) = −

∑n
k=1jk(t)(�k(t) − T(t)(∂Uk/∂T)), are the rates of

heat dissipated/absorbed due to the internal resistance and chem-
ical reactions. In electrochemistry, Qrev(t) is also called the Gibbs
free-energy change.

In order to develop a linear graph for the thermal domain,
we need to transform the thermal balance equation into the
temperature-entropy form so that the through Ṡ(t) and across T(t)
variables appear explicitly in the equation. Dividing both sides of
Eq. (15) by T(t) results in

Ṡ(t) = Ṡext(t) + Ṡirr(t) + Ṡrev(t), (16)

where Ṡext(t), Ṡirr(t), and Ṡrev(t) are the time derivatives of the
entropy for the external temperature exchange term, the irre-
versible term, and the reversible term, respectively. In Eq. (16),
Ṡrev(t) is the sum of the individual entropies for the chemical reac-
tions and can be expressed as Ṡrev(t) =

∑n
k=1Ṡrevk

(t).

3.4. Linear graph for battery model

Following the circuitry representation for the chemical domain
as discussed in Section 3.2 and the temperature-entropy represen-
tation given in Section 3.3,  we can develop the linear graphs for
both domains. Examples for such graphs are shown in Fig. 8. In this
figure, C’s and R’s are the nonlinear capacitors and resistors whose
equations are given in (8) and (11). For convenience, the current
i(t) and voltage v(t) will be used as through and across variables for
the chemical domain. The current flowing through each component
can be related to the current density by i(t) = Asurfj(t). The voltage
across each resistor is the surface-over potential �(t) while the volt-
age across the each capacitor component is the open-circuit voltage
�(t). The tree branches and chords have been arbitrarily chosen as
shown in Fig. 8a, which bears a striking resemblance to the physical
system in Fig. 7. We  use a solid line to represent a tree branch and a
dotted line for a chord. If the model of the external circuit is known,
we can also construct the linear graph for the entire system. For bat-
tery charge and discharge operations, the external circuit is simply
a current source which delivers electric current to the battery. The
perature T(t), respectively. It can be realized that the product of Ṡ(t)
and T(t) is power, same as the product of voltage and current. This
indicates that the energy flowing through the system components
is conserved.
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Fig. 7. Equivalent circuit-based representation for electrochemical cell.
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Fig. 8. Linear graph representation for (

The system dynamic equations can be developed following the
rocedures discussed in Section 2.2.  We  can write the through vari-
bles vector for the chemical domain as

 =
[

iCc1 (t) . . . iCan (t) iRc1 (t) . . . iRan (t) iRint
(t) icell(t)

]T

(17)

The molalities ck’s in Eq. (8) can be replaced by charge vari-
bles qk’s using Faraday’s law in (9).  These charges are also through
ariables

=
[

qCc1 (t) . . . qCan (t) qRc1 (t) . . . qRan (t) qRint
(t) qcell(t)

]T

(18)

Similarly, the across variable vector can be defined as follows

[ ]T
 = vCc1 (t) . . . vCan (t) vRc1 (t) . . . vRan (t) vRint
(t) vcell(t)

(19)
mical domain and (b) thermal domain.

We  can also define the through and across variable vectors for
the thermal domain

s =
[

Ṡext(t) Ṡirr(t) Ṡrev1 (t) . . . Ṡrevn (t) Ṡ(t)
]T

(20)

and

t =
[

Text(t) Tirr(t) Trev1 (t) . . . Trevn (t) T(t)
]T

(21)

The branch and chord transformations can be applied directly
to the current and voltage variables as shown in Eqs. (4) and (3).
However, for the charge variables, initial values, which appear as
we integrate the current variables, must be included in the chord
transformation equation. This gives

[qb(t) + qb(0)] = −Acq[qc(t) + qc(0)] (22)

The formulation procedures for an electrochemical system can
be summarized as in Fig. 9. The figure depicts the steps in the for-
mulation as well as their resulting output variables. After the final

step we  obtain 2(n  − 1) + 1 ODEs representing the charge–current
relation equations, 2(n  − 1) + 1 algebraic equations for the chemi-
cal domain, and 1 ODE for the thermal domain. It can be observed
that 2(n  − 1) + 1 is also the number of chords in the linear graph.
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Fig. 9. Formulation steps for electrochemical cells.

he number of equations can be reduced further if some of the
hrough variables are known functions of time. As an example, if
he applied current on the battery terminals is known then icell
an be considered as a current driver and two equations (i.e., one
harge–current relation and one algebraic equation) can be elim-
nated from the final equations since the value of icell can now be
ubstituted directly into all the equations.

. Application to NiMH cell model

Due to its dominance in almost all hybrid vehicles the NiMH
attery model has been chosen to demonstrate the technique in
his paper. The NiMH is one of the latest battery technologies
nd has many advantages over the other more commonly used
echargeable batteries such as the lead-acid battery or the nickel-
admium battery. Some of these advantages include higher energy

ensity, more environmental friendly, and less prone to memory
i.e., periodic exercise cycles need to be done less often). The NiMH
attery model presented is a modified version of the lumped bat-
ery model proposed by Wu  et al. [4].  In this section, the NiMH
ources 196 (2011) 10442– 10454

chemistry together with side reactions and thermal effects will be
presented, followed by a linear-graph-based formulation for both
chemical and thermal domains.

4.1. NiMH battery chemistry

The chemical reactions on the two electrodes of the battery can
be written as follows:

Main reaction on positive electrode:

NiOOH + H2O + e−discharge
�

charge
Ni(OH)2 + OH− (23)

Side reaction on positive electrode:

2OH− → 1
2

O2 + H2O + 2e− (24)

Main reaction on negative electrode:

MH + OH−discharge
�

charge
M + H2O + e− (25)

Side reaction on negative electrode:

1
2

O2 + H2O + 2e− → 2OH− (26)

where the metal M in the negative electrode is an inter-metallic
compound, usually a rare earth compound. During charging, oxy-
gen is generated at the nickel electrode and the gas is formed when
the solubility limit in the electrolyte is reached. The oxygen is then
transported to the metal hydride electrode where it is reduced by
the recombined reaction (26). During discharge, the oxygen gen-
eration reaction may  occurs at low rates, at which the potential of
the nickel electrode is higher than the equilibrium potential of the
oxygen generation [16,17].

The electromotive force in the battery as defined by the open-
circuit potentials (i.e., Nernst’s equations) for the main reactions
(23) and (25) on the positive and negative electrodes is

�1(t) = U1 + (T(t) − T0)
∂U1

∂T
+ RT(t)

F
ln

(
cH+,max − cH+ (t)

cecH+ (t)

)
(27)

�3(t) = U3 + (T(t) − T0)
∂U3

∂T
+ RT(t)

F
ln
(

c2
e

)
+ 9.712 × 10−4

+0.2372 exp

(
−28.057cMH(t)

cMH,max

)

− 2.7302 × 10−4

(cMH(t)/cMH,max)2 + 0.010768

(28)

and the equilibrium potential for the oxygen reactions (24) and (26)
is given by

�2(t) = U2 + (T(t) − T0)
∂U2

∂T
+ RT(t)

2F
ln

(
p0.5

O2
(t)

c2
e

)
(29)

In these equations, cH+ (t) is the concentration of Ni(OH)2, cMH(t)
is the concentration of the metal hydride (MH), pO2 is the par-
tial pressure of oxygen gas, and T(t) is the battery temperature.
Other parameters and constants are listed in Table B.1.  Eq. (28) was
curve-fitted from the experimental data of a nickel/KOH/LaNi5 bat-
tery using a nickel oxide positive electrode provided by Paxton and

Newman [1]. There is only one open-circuit potential equation (29)
for the two side reactions (24) and (26) since side reactions are cou-
pled together by the oxygen transport from the positive electrode
to the negative electrode.
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The rate of chemical reactions on each electrode is defined by
he Butler–Volmer equation which relates the current density jk(t)
o the surface over-potential �k(t) by

k(t) = i0,k

[
exp

(
˛kF

RT(t)
�k(t)

)
− exp

(
− ˛kF

RT(t)
�k(t)

)]
(30)

here k = 1 . . . 3 for the first three chemical equations (23)–(25).
he exchange current density i0,k for each chemical equation is
iven by

0,1 = i0,1,ref

(
cH+ (t)
cH+,ref

)0.5(
ce

ce,ref

)0.5(
cH+,max − cH+ (t)

cH+,max − cH+,ref

)0.5

× exp
[

Ea,1

R

(
1

T(t)
− 1

T0

)]
(31)

0,2 = i0,2,ref

(
ce

ce,ref

)0.5(
pO2 (t)
pO2,ref

)0.5

exp
[

Ea,2

R

(
1

T(t)
− 1

T0

)]
(32)

0,3 = i0,3,ref

(
cMH(t)
cMH,ref

)0.5(
ce

ce,ref

)0.5(
cMH,max − cMH(t)
cMH,max − cMH,ref

)0.5

× exp
[

Ea,3

R

(
1

T(t)
− 1

T0

)]
(33)

here i0,k,ref is the exchange current density at a reference reactant
oncentration.

For the oxygen reduction reaction on the negative electrode, a
imiting current equation is used for the rate of reaction

4(t) = − pO2 (t)
pO2,ref

i0,4 (34)

here

0,4 = i0,4,ref exp
[

Ea,4

R

(
1

T(t)
− 1

T0

)]
(35)

The battery current icell(t) can be calculated from the charge

alance equations on the electrodes given by

cell(t) = Aposaposlpos(j1(t) + j2(t)) (36)

cell(t) = −Aneganeglneg(j3(t) + j4(t)) (37)
tation for NiMH cell.

The mass balance of the nickel active material is given by

j1(t) = F
dcH+ (t)

dt

LNi(OH)2

�Ni(OH)2
lposapos

(38)

j3(t) = F
dcMH(t)

dt

LMH

�MHlneganeg
(39)

Aposaposlposj2(t) + Aneganeglnegj4(t) = F
dpO2

(t)

dt

Vgas

RT(t)
(40)

The battery temperature can be obtained from the energy bal-
ance of the whole cell described by Eq. (14).

4.2. Linear graph representation for chemical domain

The application of the linear graph concept to the chemical reac-
tions of the NiMH battery is a straightforward operation. The main
and side chemical reactions for the NiMH battery model shown in
Section 4.1 can be represented by an equivalent electrical circuit
as shown in Fig. 10.  The open-circuit voltage equations (27), (29)
and (28) can be represented by nonlinear electrical capacitors C1,
C2, and C3. The relationship between the electrical potentials �k
and concentrations in these equations is similar to the capacitive
relationship between voltage and charge in an electrical capacitor.

The nonlinear resistors R1, R2, and R3 are used to model the
resistive relationship between the current density and over voltage
in Eq. (30). The current density for the oxygen reduction reaction
in Eq. (34) and the applied current at the battery terminals can
be represented by the current drivers i4(t) = I4 and icell(t) = Iapp. For
simplicity, it is assumed that the battery is cycled with a constant
current Iapp. We  also assume that the battery has thin electrodes
and, therefore, we  can ignore the influence of the battery internal
resistance.

The linear graph for the chemical domain is shown in Fig. 11.
We see that the topological graph structure comprises eight edges,
to which we  have assigned arbitrary sign directions. The number of
equations to be solved simultaneously can be reduced by selecting
a tree and using a branch-chord formulation, as described in Section
2. Choosing C1, C3, C3, R2, and R3 as branches and R1, I4, and Iapp as

chords can reduce the number of final equations as it will be shown
that the equations for I4 and Iapp are known (i.e., limiting current for
oxygen reduction reaction and constant charge/discharge current).

The column matrix of through variables is:
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Fig. 11. Linear graph presentation for main and side chemical reactions.

 =
[

iC1(t) iC2(t) iC3(t) iR2(t) iR3(t) iR1(t) i4(t) icell(t)
]T

(41)

Vector i can be broken down into the branch through variable
ector ib and chord through variable vector ic as

b =
[

iC1(t) iC2(t) iC3(t) iR2(t) iR3(t)
]T

(42)

c =
[

iR1(t) i4(t) icell(t)
]T

(43)

Since the currents, which are the derivatives of the electrical
harges, are through variables, the charges are also through vari-
bles and can be written in vector forms as

b =
[

qC1(t) qC2(t) qC3(t) qR2(t) qR3(t)
]T

(44)

c =
[

qR1(t) q4(t) qcell(t)
]T

(45)

The current and charge variables are expressed in terms of the
urrent densities and concentrations as follows

iR1(t) = Aposaposlposj1(t)
iR2(t) = Aposaposlposj2(t)
iR3(t) = Aneganeglnegj3(t)
i4(t) = Aneganeglnegj4(t)

(46)

nd

qC1(t) = FAposLNi(OH)2

�Ni(OH)2

cH+ (t)

qC3(t) = FAnegLMH

�MH
cMH(t)

qC2(t) + q4(t) = FVgas

RT(t)
pO2 (t)

(47)

Similarly, the across variable vector can be defined as follows
=
[

vC1(t) vC2(t) vC3(t) vR2(t) vR3(t) vR1(t) v4(t) vcell(t)
]T

(48)
ources 196 (2011) 10442– 10454

vb =
[

vC1(t) vC2(t) vC3(t) vR2(t) vR3(t)
]T

(49)

vc =
[

vR1(t) v4(t) vcell(t)
]T

(50)

where the voltage variables are related to the battery electrical
potentials by

vCk(t) = �k(t)
vRk(t) = �k(t) k = 1 . . . 3 (51)

For convenience, the Butler–Volmer equations are converted
into the conductance form by applying the inverse hyperbolic oper-
ation to Eqs. (30) as

vRk(t) = RT(t)
˛kF

ln

⎡
⎣ jk(t)

2i0,k
+

√(
jk(t)
2i0,k

)2

+ 1

⎤
⎦ k = 1 . . . 3

(52)

The expressions in Eqs. (27), (29), (28), (34) and (52) can be
written as functions of currents, charges, and voltages using the
relations in (46), (47) and (51); doing so, we obtain the following
set of six terminal equations

vC1(t) = U1 + (T(t) − T0)
∂U1

∂T

+RT(t)
F

ln

(
cH+,maxFAposLNi(OH)2

− �Ni(OH)2
qC1(t)

ce�Ni(OH)2
qC1(t)

)
vC2(t) = U2 + (T(t) − T0)

∂U2

∂T

+RT(t)
2F

ln

(√
((qC2(t) + q4(t))/(FVgas))RT(t)

c2
e

)

vC3(t) = U3 + (T(t) − T0)
∂U3

∂T
+ RT(t)

F
ln
(

c2
e

)
+ 9.712 × 10−4

+0.2372 exp

[
− 28.057�MH

FAnegLMHcMH,max
qC3(t)

]

− 2.7302 × 10−4[
((�MH/(FAnegLMHcMH,max))qC3(t)

]2 + 0.010768

vR2(t) = RT(t)
˛2F

ln

[
iR2(t)

2i0,2Aposaposlpos

+

√(
iR2(t)

2i0,2Aposaposlpos

)2

+ 1

⎤
⎦

vR3(t) = RT(t)
˛3F

ln

[
iR3(t)

2i0,3Aneganeglneg

+

√(
iR3(t)

2i0,3Aneganeglneg

)2

+ 1

⎤
⎦

vR1(t) = RT(t)
˛1F

ln

[
iR1(t)

2i0,1Aposaposlpos

+

√(
iR1(t)

2i0,1Aposaposlpos

)2

+ 1

⎤
⎦

(53)

In a similar manner, the current driver in (34) can also be written

as

i4(t) = −qC2(t) + q4(t)
pO2,refFVgas

RT(t)i0,4 (54)
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We  now define the f-cutset and f-circuit matrices. For the graph
iven in Fig. 11 and the given tree selection, the fundamental-cutset
atrix is obtained:

f =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 −1 0 0
0 1 0 0 0 1 0 −1
0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 −1
0 0 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦ =

[
1b Ac

]
(55)

hich can be used to write the chord transformation equation for
his system

iC1(t)
iC2(t)
iC3(t)
iR2(t)
iR3(t)

⎞
⎟⎟⎠ = −

⎡
⎢⎢⎢⎢⎣

−1 0 0
1 0 −1
0 1 1
1 0 −1
0 1 1

⎤
⎥⎥⎥⎥⎦
(

iR1(t)
i4(t)

icell(t)

)
(56)

For the charge variables, initial values must be included in the
hord transformation equations, which yields

qC1(t) − qC1(0)
qC2(t) − qC2(0)
qC3(t) − qC3(0)
qR2(t) − qR2(0)
qR3(t) − qR3(0)

⎞
⎟⎟⎠ = −

⎡
⎢⎢⎢⎢⎣

−1 0 0
1 0 −1
0 1 1
1 0 −1
0 1 1

⎤
⎥⎥⎥⎥⎦
(

qR1(t) − qR1(0)
q4(t) − q4(0)

qcell(t) − qcell(0)

)
(57)

From the fundamental-cutset matrix, one can directly obtain the
ollowing fundamental-circuit matrix:

f =

⎡
⎢⎣

1 −1 0 −1 0 1 0 0
0 0 −1 0 −1 0 1 0
0 1 −1 1 −1 0 0 1

⎤
⎥⎦ =

[
Bb 1c

]
(58)

n which each row corresponds to an equation along the edges
nclosing each circuit.

Similarly, making use of Eq. (4),  the branch transformation for
he system can be written explicitly as

) ⎡
1 −1 0 −1 0

⎤⎛ vC1
⎞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Aneganeglneg[qcell(t) + qC2(0) − qR1(t) + qR1(0) − qcell(0)
FVgaspO2,ref

RT(t)
˛1F

ln

⎡
⎣ iR1(t)

2i0,1Aposaposlpos
+

√(
iR1(t)

2i0,1Aposaposlpos

)2

+

+RT(t)
F

ln

(
FAposLNi(OH)2

cH+,max − �Ni(OH)2
(qR1(t) + qR1(

ce�Ni(OH)2
(qR1(t) + qR1(0) − qC1(0

−U2 + (T(t) − T0)
∂U2

∂T
+ RT(t)

2F
ln

(√
RT(t)(−qR1(t) + qR

−RT(t)
˛2F

ln

⎡
⎣ −iR1(t) + icell(t)

2i0,2Aposaposlpos
+

√(
−iR1(t) + icell(t)
2i0,2Aposaposlpos

)2
vR1
v4

vcell

= −⎢⎣ 0 0 −1 0 −1
0 1 −1 1 −1

⎥⎦⎜⎜⎝ vC2
vC3
vR2
vR3

⎟⎟⎠ (59)
ources 196 (2011) 10442– 10454 10451

Substituting Eq. (47) and the first equation in (59) into the ter-
minal equations in (53) we obtain

RT(t)
˛1F

ln

⎡
⎣ iR1(t)

2i0,1Aposaposlpos
+

√(
iR1(t)

2i0,1Aposaposlpos

)2

+ 1

⎤
⎦+

+U1 + (T(t) − T0)
∂U1

∂T
+ RT(t)

F

× ln

(
FAposLNi(OH)2

cH+,max − �Ni(OH)2
qC1(t)

ce�Ni(OH)2
qC1(t)

)
+

−U2 + (T(t) − T0)
∂U2

∂T
+ RT(t)

2F
ln

(√
RT(t)(qC2(t) + q4(t))

c2
e

√
FVgas

)
+

−RT(t)
˛2F

ln

⎡
⎣ iR2(t)

2i0,2Aposaposlpos
+

√(
iR2(t)

2i0,2Aposaposlpos

)2

+ 1

⎤
⎦ = 0

(60)

By applying the chord transformations in (56) and (57) to both
current and charge variables in (54) and (60), we obtain the follow-
ing set of two equations:

(t)]RT(t)i0,4 = i4(t)

 U1 + (T(t) − T0)
∂U1

∂T
+

 qC1(0))
)

+

+ qcell(t) − qcell(0) + qC2(0) + q4(t))

c2
e

√
FVgas

)
+

= 0

(61)

It should be noted from the above equation that icell(t) is the cur-
rent applied on the battery terminals and, therefore, is completely
known. We  have the following relationships

iR1(t) = dqR1(t)
dt

i4(t) = dq4(t)
dt

icell(t) = dqcell(t)
dt

(62)

Therefore, Eq. (61) become a set of two ordinary differential equa-
tions (ODEs) which only consists of three unknowns qR1(t), q4(t),
and T(t) and can easily be solved using a numerical integrator with
proper initial conditions, if the temperature is known.

4.3. Linear graph for thermal domain

In Section 4.2 we  have shown the steps to develop a linear graph
and system equations for a NiMH model under the assumption
of constant battery temperature. In real automotive applications,
studying the thermal effects of batteries is of particular impor-
tance due to the large influence of battery temperature on the
battery and vehicle performance. Besides reducing battery effi-
ciency, overheating a battery may  even cause an explosion if the
battery temperature is not controlled. Due to these reasons, it is

desirable to also develop a linear graph for the thermal effects in a
car battery.

To construct a linear graph for the thermal domain, we can
make use of the entropy–temperature relationship in Eq. (16) for
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Fig. 13. Battery discharge at constant rates.

Fig. 14. Battery charge at constant rates.
Fig. 12. Linear graph representation for thermal domain.

he four chemical reactions. Considering the time-derivative of the
ntropies as through variables and the temperature as an across
ariable, we can construct the linear graph for the thermal domain
s shown in Fig. 12.  By applying the branch and chord transforma-
ions in Eqs. (59), (56) and (57), we can also convert Eq. (16) into a
unction that is only dependent on T(t), qR1(t), and q4(t).

.4. Simulation results

The model developed has been used to simulate several scenar-
os in order to observe its behaviors, particularly with regard to
hermal effects. Table B.1 contains the model parameters used in
he simulations. These parameters were identified using homotopy
ptimization from a 3.4 A h NiMH battery produced by North Amer-
can Battery Company (NABC) based on the reference parameters
rovided in the work of [4].  The battery data was measured at A&D
echnology’s laboratory in Ann Arbor, Michigan, USA.

The battery voltage versus time for four different discharge
nd charge rates from 1 C (3.4 A) to 1/8 C (0.425 A) are shown in
igs. 13 and 14 . As expected, the battery voltage drops/rises more
uickly as the discharge/charge current is increased. Fig. 15 com-
ares the battery voltages obtained from simulation results and
attery testing data at a constant charge and discharge rate of 1/5 C.
t can be seen that these results are in good agreement.

The battery temperature during discharge and charge versus
ime is shown in Figs. 16 and 17 . It is assumed that the battery
as been cooled down to room temperature (25 ◦C) at the start of
ach simulation. In these figures, the depletion of reactants results
n high over-potential loss that causes a rapid cell temperature
ncrease. Due to the temperature exchange with the environment,
he battery temperature is flattened out at the end of the cycle. At a
igh charge rate, due to the high ohmic and over-potential losses,
igh charge potential is needed as expected. The cell heat gener-
tion is also significant at high discharge currents for the same
easons. This may  cause the cell temperature to rise more than
0 ◦C. At high-rate charge, the oxygen generation also increases
ery quickly, contributing significantly to the increase in the cell
emperature. However, during discharge, oxygen gas is only gen-
rated at low currents. This explains the difference between the cell

emperatures in the two figures at the same rates, particularly at the
igh rates. Battery temperature control is therefore very important,
articularly in a battery electric vehicle or hybrid electric vehicle
ystem where the current intensity is usually very high.

Fig. 15. Simulated and experimental battery voltages at 1/5 C charge/discharge rate.
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Fig. 16. Battery temperature rising from initial temperature 25 ◦C at constant dis-
charge rates.
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Appendix B. NiMH battery parameters used in simulations

See Tables B.1 and B.2 .

Table A.1
Through and across variables.

Domain Through (unit) Across (unit)

Electrical Current Voltage
i  (A) v  (V)

Mechanical translational Force Velocity
�F (N) �v  (m s−1)

Mechanical rotational Torque Angular velocity
��  (N m) �ω (rad s−1)

Hydraulic Volume flow Pressure
�v (m3 s−1) p (N m−2)

Thermal Entropy flow Temperature
dS/dt (W K−1) T (K)

Chemical Molar flow Chemical potential
dN/dt  (mol s−1) 	 (J mol−1)

Table B.1
NiMH battery parameters.

Parameter Unit Symbol Value

Specific electrode area of
positive electrode

cm2 cm−3 apos 4000.0

Specific electrode area of
negative electrode

cm2 cm−3 aneg 3000.0

Surface area of positive
electrode

cm2 Apos 175.0

Surface area of negative
electrode

cm2 Aneg 100.0

Thickness of positive electrode cm lpos 3.3 × 10−2

Thickness of negative electrode cm lneg 2.8 × 10−2

Loading of nickel active
material

g cm−2 LNi(OH)2
6.8 × 10−2

Loading of metal hydride
material

g cm−2 LMH 1.13 × 10−1

Concentration of KOH
electrolyte

mol  cm−3 ce 7.0 × 10−3

Reference concentration of
KOH electrolyte

mol  cm−3 ce,ref 1.0 × 10−3

Maximum concentration of
Ni(OH)2 in nickel active
material

mol  cm−3 cH+,max 3.7 × 10−2

Reference concentration of mol  cm−3 cH+,ref 0.5cH+,max
ig. 17. Battery temperature rising from initial temperature 25 ◦C at constant charge
ates.

One of the most noticeable results is that the linear graph
odel simulates approximately 30% faster than the lumped model

i.e., all equations in [4] are stacked together) at all charge and dis-
harge rates as summarized in Table B.2. The simulation times were
btained from a DellTMOptiPlex 2.9 GHz desktop computer using
aple dsolve function based on the default Runge–Kutta Fehlberg

umeric integrator with the same settings (abserr = relerr = 10−7)
or both linear graph and lumped models.

. Conclusion

In this paper, we have presented a linear graph formulation
or systematically generating a compact set of dynamic equations
overning electrochemical systems. By carefully managing how
quations are formed, a smaller set of expressions is obtained.
his benefits symbolic implementation by reducing the size of the
argest expression that needs to be handled by the computer, thus
llowing for the analysis of more complicated systems. It was  also
hown that the equations obtained using linear graph theoreti-
al approach simulated approximately 30% faster than the original

umped model.

Since the interconnections between a system’s components are
epresented by a linear graph, tree selection strategies can be used
o determine the modeling variables for the system. It is clear that
ources 196 (2011) 10442– 10454 10453

this flexibility can provide benefits during formulation as well as
simulation.

This approach can be extended to modeling a more complex
system such as a battery electric vehicle or a hybrid electric vehi-
cle within which a battery model is an important part. This is a
potential for future research since modeling individual parts of
a battery/hybrid electric vehicle has been done in the literature
[9,12,18], but never before using linear graph theory.
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Appendix A. Through and across variables for some
physical systems

See Table A.1.
Ni(OH)2 in nickel active
material

Maximum concentration of
hydrogen in metal hydride
material

mol cm−3 cMH,max 1.0 × 10−1
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Table  B.1 (Continued)

Parameter Unit Symbol Value

Reference concentration of
hydrogen in metal hydride
material

mol  cm−3 cMH,ref 0.5cMH,max

Reference oxygen pressure atm pO2,ref 1.0
Exchange current density of

reaction at reference
reactant concentration for
first reaction

A cm−2 i0,1,ref 15.1 × 10−4

Exchange current density of
reaction at reference
reactant concentration for
second reaction

A cm−2 i0,2,ref 2.0 × 10−4

Exchange current density of
reaction at reference
reactant concentration for
third reaction

A cm−2 i0,3,ref 10.2 × 10−4

Exchange current density of
reaction at reference
reactant concentration for
fourth reaction

A cm−2 i0,4,ref 13.2 × 10−4

Activation energy for first
reaction

J mol−1 Ea,1 10.0 × 103

Activation energy for second
reaction

J mol−1 Ea,2 120.0 × 103

Activation energy for third
reaction

J mol−1 Ea,3 10.0 × 103

Activation energy for fourth
reaction

J mol−1 Ea,4 10.0 × 103

Reversible heat for first
reaction

V K−1 ∂U1/∂ T −1.35 × 10−3

Reversible heat for second
reaction

V K−1 ∂U2/∂ T −1.68 × 10−3

Reversible heat for third
reaction

V K−1 ∂U3/∂ T −1.55 × 10−3

Reversible heat for fourth
reaction

V K−1 ∂U4/∂ T −1.68 × 10−3

Charge transfer coefficient ˛1 0.5
Charge transfer coefficient ˛2 1.0
Charge transfer coefficient ˛3 0.5
Open-circuit voltage V U1,c , U1,d 0.527, 0.458
Open-circuit voltage V U2 0.4011
Open-circuit voltage V U3 −0.8279
Open-circuit voltage V U4 0.4011
Gas volume in NiMH cell cm3 Vgas 1.0 × 10−1

Density of nickel active
material

g cm−3 �Ni(OH)2
3.4

Density of metal hydride g cm−3 �MH 7.47
Reference battery temperature K T0 303.15

Table B.2
Average simulation time (in s) comparison between linear graph model and lumped
model.

Applied current Linear graph model Lumped model

Discharge 1 C 0.898 1.115
Discharge 1/2 C 0.922 1.176
Discharge 1/4 C 0.902 1.121
Discharge 1/8 C 0.916 1.198
Charge 1 C 0.904 1.128
Charge 1/2 C 0.919 1.122
Charge 1/4 C 0.918 1.124

[
[
[

[
[

[

[

[

[

Charge 1/8 C 0.920 1.189
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